R-Deformed Heisenberg Algebra, Quantum Mechanics, and Virasoro Algebra

E. H. EL Kinani^{1,2}

Received February 10, 2000

We review the R-deformed Heisenberg algebra and its Fock space representation. We construct the R-deformed quantum mechanics in N dimensions, and propose a new R-deformed Virasoro algebra.

1. INTRODUCTION

Quantum groups or deformed Lie algebras imply specific deformations of classical Lie algebras. From a mathematical point of view, they are noncommutative associative Hopf algebras. The structure and representation theory of such algebras have been developed extensively by Jimbo (1985, 1986) and Drinfel'd (1986).

The R-deformed Heisenberg algebra, which is the deformation involving the reflection operator $R(R^2 = 1)$, was introduced by Vasiliev (1989, 1991) in the context of the higher spin algebras, and modified by other authors (Brink *et al.*, 1992, 1993) in the investigation of the quantum mechanical *N*-body Calogero model, which is related to the (1 + 1)-dimensional anyon (Leinaas and Myrhein, 1988).

The paper is arranged as follows: In Section 2, we review the R-deformed Heisenberg algebra (Pyuschay, 1996a,b; Filippov *et al.*, 1992) and its representation. In Section 3, we use these results to construct the R-deformed quantum mechanics in N dimensions. In Section 4, we present a new deformed Virasoro algebra which we call the R-deformed Virasoro algebra.

1457

0020-7748/00/0600-1457\$18.00/0 © 2000 Plenum Publishing Corporation

¹Département de Physique, L.P.(S.M)₂, Faculté des Sciences et Techniques, Errachidia, B.P 509, Morocco, and U.F.R de Physique Théorique, Faculté des Sciences, Université M^{ed}V, Rabat, B.P 1014, Morocco.

²Permanent address: Département de Mathématique, Faculté des Sciences et Technique, Boutalamine B.P 509, Errachidia, Morocco.

2. REVIEW OF THE R-DEFORMED HEISENBERG ALGEBRA

In brief, the R-deformed Heisenberg algebra is generated by the generators a^+ , a^- , 1 and the reflection operator R satisfying the following (anti) commutation relations:

$$[a^{-}, a^{+}] = 1 + \nu R; \qquad R^{2} = 1 \tag{1}$$

$$Ra^{+} + a^{+}R = Ra^{-} + a^{-}R = 0, \qquad [a^{-}, 1] = [a^{+}, 1] = [R, 1] = 0$$

where ν is a real deformation parameter. The reflection operator R is Hermitian and a^+ (a^-) plays the role of creation (annihilation) operator.

Let us introduce the Fock space basis $|m\rangle = C_m|0\rangle$, where $|0\rangle$ is the ground state, which is the vacuum state satisfying $a^-|0\rangle = 0$, $\langle 0|0\rangle = 1$, and $R|0\rangle = r|0\rangle$, where $r = \pm 1$, and the C_m are normalization constants. Then from the relation

$$[a^{-}, (a^{+})^{n}] = (n + \frac{1}{2}(1 - (-1)^{n}\nu R)(a^{+})^{n-1}$$
(2)

we get the action of the operator a^+a^- on the state $(a^+)^n|0\rangle$, n = 0, 1, 2, ...,

$$a^{+}a^{-}(a^{+})^{n}|0\rangle = [n]_{\nu}(a^{+})^{n}|0\rangle$$
 (3)

where the ν -symbol is given by

$$[n]_{\nu} = n + \frac{\nu}{2} \left(1 + (-1)^{n+1} \right) \tag{4}$$

Here *r* is taken to be +1.

Hence, we conclude that in the case when $\nu > -1$, the space of representation (1) is infinite and given by the complete set of normalized vectors

$$|m\rangle = \frac{(a^{+})^{m}}{\sqrt{[m]_{\nu}!}} |0\rangle, \qquad \langle m|m'\rangle = \delta_{mm'}$$
(5)

where $[m]_{\nu}! = [m]_{\nu} \dots [1]_{\nu}$.

In what follows, it is convenient to introduce the operators

$$(\pi_{\pm}) = \frac{1}{2} (1 \pm R) \tag{6}$$

which satisfy the equalities $(\pi_{\pm})^2 = \pi_{\pm}$, $\pi_+\pi_- = 0$, and $\pi_+ + \pi_- = 1$, and the number operators N with

$$a^+a^- = \mathbf{N} + \nu \pi_- \tag{7}$$

where N satisfies the commutation relations

$$[a^{-}, \mathbf{N}] = a^{-}, \qquad [a^{+}, \mathbf{N}] = -a^{+}$$
 (8)

and $\mathbf{N}|0\rangle = 0$. As a consequence of the above equality, we get

1458

R-Deformed Virasoro Algebra

$$\mathbf{N}|m\rangle = m|m\rangle \tag{9}$$

Using Eqs. (7) and (1), one obtains

$$a^{-}a^{+} = \mathbf{N} + 1 + \nu \pi_{+} \tag{10}$$

Combining Eqs. (10) and (7), we derive the following expression for the number operator:

$$\mathbf{N} = \frac{1}{2} \{ a^{-}, a^{+} \} - \frac{1}{2} (1 + \nu)$$
(11)

One can realize the R operator in terms of the operators a^{\pm} by means of Eq.(11):

$$R = \cos(\pi \mathbf{N}) \tag{12}$$

Then, the R operator acts in the state $|m\rangle$ as

$$R|m\rangle = \cos(\pi \mathbf{N})|m\rangle = (-1)^m|m\rangle \tag{13}$$

This equality explains the name of the operator R, namely, the reflection operator. So we can rewrite the (11) for the number operator in the following form:

$$\mathbf{N} = a^{+}a^{-} + \frac{\nu}{2}(\cos \pi \mathbf{N} - 1)$$
(14)

Here the R-deformed oscillator algebra (1) can be reduced to the compact form

$$a^{-}a^{+} = f(a^{+}a^{-}) \tag{15}$$

where $f(a^{+}a^{-}) = a^{+}a^{-} + \nu(\cos \pi N a^{+}a^{-})$.

To conclude this section, we note that one gets the realization of the Rdeformed Heisenberg algebra in terms of the undeformed oscillator algebra generated by (b^-, b^+) where a^+ and a^- are expressed as

$$a^{-} = G(\mathbf{N}_{b})b^{-}, \qquad a^{+} = b^{+}G(\mathbf{N}_{b})$$
 (16)

G is a Hermitian function of the number operator $N_b = b^+ b^-$,

$$G(\mathbf{N}_b) = \sqrt{1 + \frac{\nu}{2(\mathbf{N}_b + 1)} (1 + (-1)^{\mathbf{N}_b})}$$
(17)

where $\nu > -1$.

If we put $\nu = -(2p + 1)$, $p = 1, 2, 3, \ldots$, the function $G(\mathbf{N}_b)$ takes the value zero and from (2), we get $(a^+)^{2p+1} = (a^-)^{2p+1} = 0$. This leads us to discuss the para-Grassman representation of the R-deformed Heisenberg algebra. In this representation a^+ can be intepreted as a para-Grassman variable

1459

 θ , $(\theta)^{2p+1} = 0$, and the annihilation operator a^- as a differentiation ∂_{θ} , $(\partial_{\theta})^{2p+1} = 0$, which satisfy (Filippov *et al.*, 1992)

$$\begin{bmatrix} \theta, \ \partial_{\theta} \end{bmatrix} = 1 - (2p+1)R$$

$$\{\partial_{\theta}, R\} = \{\theta, R\} = 0$$
(18)

So the R-deformed Heisenberg algebra is nonthing but the para-Grassman algebra of order 2p + 1.

In this realization, thanks to the nilpotency condition $(a^+)^{2p+1}$, the Fock space in finite and its basis is given by

$$F = |m\rangle, \qquad m = 1, 2, 3, \dots, 2p$$
 (19)

3. R-DEFORMED QUANTUM MECHANICS IN N DIMENSIONS

In this section, we construct the R-deformed harmonic oscillator in one dimension; the generalization to N dimensions is staightforward. In order to formulate it, we define the position and momentum operators as

$$X = \frac{1}{\sqrt{2}} (a^{-} + a^{+})$$

$$P_{\nu} = \frac{i}{\sqrt{2}} (a^{-} - a^{+})$$
(20)

Then the Hamiltonian of the R-deformed harmonic oscillator is given by

$$H_{\nu} = \frac{1}{2}(P_{\nu}^2 + X^2) = \frac{1}{2}\{a^+, a^-\}$$
(21)

where $a^{\pm} = (1/\sqrt{2}) (X \pm iP_{\nu})$ and P_{ν} is the deformed momentum operator $P_{\nu} = -i(d/dX - \nu R/2X)$.

The R-deformed cannonical relation can be expressed as

$$XP_{\nu} - P_{\nu}X = i(1 + \nu R)$$
(22)

Now, we look at the energy spectrum of such systems, which is given by

$$H_{\nu}|m\rangle = E_{\nu}(m)|m\rangle \tag{23}$$

where $E_{\nu}(m) = ([m]_{\nu} + \frac{1}{2} - (-1)^{m+1}\nu).$

For the *N*-dimensional case, the Hamiltonian of R-deformed harmonic oscillator in N dimensions is given by

$$H_{\nu} = (H_{\nu})_1 + (H_{\nu})_2 + \dots (H_{\nu})_N$$
(24)

and the energy spectrum is obtained by the following sum:

1460

R-Deformed Virasoro Algebra

$$E_{\nu}(m_1, m_2, \dots, m_N) = \left([m_1]_{\nu} + [m_2]_{\nu} \dots [m_N]_{\nu} + \frac{N}{2} - \{ (-1)^{m_1+1} + \dots (-1)^{m_N+1} \} \nu \right)$$
(25)

The state $|m_1, m_2, \ldots, m_N\rangle$ is obtained by applying the creation operators to the ground state $|0, 0, 0, \ldots\rangle$,

$$|m_1, \ldots, m_N\rangle = \frac{(a_1^+)^{m_1} \ldots (a_N^+)^{m_N}}{\sqrt{[m_1]_{\nu}!} \ldots \sqrt{[m_N]_{\nu}!}} |0, 0, \ldots\rangle$$
 (26)

4. A NEW R-DEFORMED VIRASORO ALGEBRA

In this section, show that the R-deformed oscillator algebra may be used to construct a new deformed Virasoro algebra, which we call R-deformed Virasoro algebra. To do this, we adopt the approach for the undeformed case (Chichian *et al.*, 1990), where the generators L_m ($m \in Z$) are expressed as $L_m = (b^+)^{m+1}b^2$, where b^\pm satisfy the undeformed oscillator algebra $[b^+, b^-] =$ 1. Then the generators L_m ($m \in Z$) obey the following commutation relations:

$$[L_m, L_n] = (m - n)L_{m+n}$$
(27)

At this point, we recall that the q-deformation of this algebra was introduced by Cutright and Zachos (1990) and investigated on many occasions (EL Kinani and Zakkari, 1995; Devchand and Saveliev, 1991; Aizawa and Sato, 1991):

$$[L_m, L_n](q^{m-n}, q^{n-m}) = [m - n]_q L_{m+n}$$
(28)

where $[A, B]_{(p,q)} = pAB - qBA$ and $[x]_q = (g^x - g^{-x})/(q - q^{-1})$.

Now, we turn to the R-deformed case; let us introduce the generators $L_m(\nu)$ as

$$L_m(\nu) = (a^+)^{m+1}a^-$$
(29)

Thanks to Eq. (2), we get the following commutation relations for $L_m(\nu)$:

$$[L_m(\nu), L_n(\nu)] = ((m-n) + \frac{1}{2}((-1)^n - (-1)^m \nu)R)L_{m+n}(\nu)$$
(30)

which goes to the ordinary Virasoro algebra for $\nu \to 0$. However, when $\nu \neq 0$, it is something new. One can ask about the commutation between *R* and the generators L_m ($m \in Z$); from Eq. (1), one easily finds $[R, L_m] = \alpha(m)RL_m$, where $\alpha(m) = 1 - (-1)^m$. For *m* even, $\alpha(m) = 0$, and *R* commutes with L_m ; for *m* odd, $\alpha(m) = 2$, and we have $[R, L_m] = 2RL_m$.

5. CONCLUDING REMARKS

In this paper, we used the R-deformed Heisenberg algebra to construct R-deformed quantum mechanics in *N* dimensions. Morever we proposed new deformation of Virasoro algebra which we call the R-deformed Virasoro algebra. Finally, we note that one can construct in same way the R-deformed W_{∞} -algebra; further details on this and the connection between R-deformation and q-deformation are given elsewhere (EL Kinani, 1999).

REFERENCES

N. Aizawa and H. Sato (1991). Phys. Lett. B 256, 185.

- L. Brink, T. H. Hansson, and M. A. Vasiliev (1992). Phys. Lett. B 286, 109.
- L. Brink, T. H. Hansson, S. Konstein, and M. A. Vasiliev (1993). Nucl. Phys. B 401, 591.
- M. Chichian, P. Kulish, and J. Lukierski (1990). Phys. Lett. B 237, 401.
- T. Cutright and C. Zachos (1990). Phys. Lett. B 243, 237.
- C. H. Devchand and M. V. Saveliev (1991). Phys. Lett. B 258, 364.
- V. Drinfel'd (1986). In Proc. Int. Cong. Math., Berkeley, p. 78.
- E. H. El Kinani and M. Zakkari (1995). Phys. Lett. B 357, 105.
- E. H. El Kinani (1999). In preparation.
- A. T. Filippov, A. P. Isaev, and A. P. Kurdikov (1992). Mod. Phys. Lett. A 7.

M. Jimbo (1985). Lett. Math. Phys. 10, 63; (1986) 11, 78.

- J. M. Leinaas and J. Myrhein (1988). Phys. Rev. B 37, 9286.
- A. P. Polychronakos (1989). Nucl. Phys. B 324.
- M. S. Pyuschay (1996a). Ann. Phys. 245; (1996b) Mod. Phys. Lett. A 11, 2953, and references therein.
- M. A. Vasiliev (1989). Pis'ma JETP 50, 344; (1991) Int. Mod. Phys. A 6, 1115.